Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Curr Opin Microbiol ; 76: 102385, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804816

RESUMO

Throughout the golden age of antibiotic discovery, Streptomyces have been unsurpassed for their ability to produce bioactive metabolites. Yet, this success has been hampered by rediscovery. As we enter a new stage of biodiscovery, omics data and existing scientific repositories can enable informed choices on the biodiversity that may yield novel antibiotics. Here, we focus on the chemical potential of rare actinomycetes, defined as bacteria within the order Actinomycetales, but not belonging to the genus Streptomyces. They are named as such due to their less-frequent isolation under standard laboratory practices, yet there is increasing evidence to suggest these biologically diverse genera harbour considerable biosynthetic and chemical diversity. In this review, we focus on examples of successful isolation and genera that have been the focus of more concentrated biodiscovery efforts, we survey the representation of rare actinomycete taxa, compared with Streptomyces, across natural product data repositories in addition to its biosynthetic potential. This is followed by an overview of clinically useful drugs produced by rare actinomycetes and considerations for future biodiscovery efforts. There is much to learn about these underexplored taxa, and mounting evidence suggests that they are a fruitful avenue for the discovery of novel antimicrobials.


Assuntos
Actinobacteria , Streptomyces , Actinobacteria/genética , Actinobacteria/metabolismo , Actinomyces , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Streptomyces/genética , Biodiversidade
2.
Org Biomol Chem ; 20(36): 7232-7235, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36062889

RESUMO

SurE is a standalone peptide cyclase essential for the production of surugamide antibiotics. Although SurE catalyses the cyclisation of varied nonribosomal peptides in vivo, its substrate specificity is poorly understood. To address this issue, an on-resin SurE cyclisation assay was developed and in combination with SNAC thioesters and kinetic measurements was used to define the chemical space of the N-terminal substrate residue.


Assuntos
Antibacterianos , Peptídeos , Ciclização , Cinética , Peptídeo Sintases/metabolismo , Peptídeos/química , Especificidade por Substrato
3.
Microb Genom ; 8(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35775972

RESUMO

Actinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as Streptomyces species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles and diverse specialised metabolism which produces many of the antibiotics currently used in the clinic. ActinoBase is a community effort that provides valuable and freely accessible resources, including protocols and practical information about filamentous actinobacteria. It is aimed at enabling knowledge exchange between members of the international research community working with these fascinating bacteria. ActinoBase is an anchor platform that underpins worldwide efforts to understand the ecology, biology and metabolic potential of these organisms. There are two key differences that set ActinoBase apart from other Wiki-based platforms: [1] ActinoBase is specifically aimed at researchers working on filamentous actinobacteria and is tailored to help users overcome challenges working with these bacteria and [2] it provides a freely accessible resource with global networking opportunities for researchers with a broad range of experience in this field.


Assuntos
Actinobacteria , Streptomyces , Actinobacteria/genética , Antibacterianos , Streptomyces/genética
5.
ACS Chem Biol ; 16(7): 1152-1158, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34151573

RESUMO

Antimycins are anticancer compounds produced by a hybrid nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) pathway. The biosynthesis of these compounds is well characterized, with the exception of the standalone ß-ketoreductase enzyme AntM that is proposed to catalyze the reduction of the C8 carbonyl of the antimycin scaffold. Inactivation of antM and structural characterization suggested that rather than functioning as a post-PKS tailoring enzyme, AntM acts upon the terminal biosynthetic intermediate while it is tethered to the PKS acyl carrier protein. Mutational analysis identified two amino acid residues (Tyr185 and Phe223) that are proposed to serve as checkpoints controlling substrate access to the AntM active site. Aromatic checkpoint residues are conserved in uncharacterized standalone ß-ketoreductases, indicating that they may also act concomitantly with synthesis of the scaffold. These data provide novel mechanistic insights into the functionality of standalone ß-ketoreductases and will enable their reprogramming for combinatorial biosynthesis.


Assuntos
Oxirredutases do Álcool/metabolismo , Antimicina A/análogos & derivados , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Antimicina A/biossíntese , Antimicina A/metabolismo , Biocatálise , Domínio Catalítico , Biologia Computacional , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Alinhamento de Sequência , Streptomyces/enzimologia , Especificidade por Substrato/genética
6.
mBio ; 11(5)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082252

RESUMO

Microbial natural products, particularly those produced by filamentous Actinobacteria, underpin the majority of clinically used antibiotics. Unfortunately, only a few new antibiotic classes have been discovered since the 1970s, which has exacerbated fears of a postapocalyptic world in which antibiotics have lost their utility. Excitingly, the genome sequencing revolution painted an entirely new picture, one in which an average strain of filamentous Actinobacteria harbors 20 to 50 natural product biosynthetic pathways but expresses very few of these under laboratory conditions. Development of methodology to access this "hidden" biochemical diversity has the potential to usher in a second Golden Era of antibiotic discovery. The proliferation of genomic data has led to inconsistent use of "cryptic" and "silent" when referring to biosynthetic gene clusters identified by bioinformatic analysis. In this Perspective, we discuss this issue and propose to formalize the use of this terminology.


Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Vias Biossintéticas/genética , Metabolismo Secundário , Antibacterianos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Biologia Computacional , Descoberta de Drogas , Genômica , Família Multigênica
7.
Antibiotics (Basel) ; 9(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727132

RESUMO

Microbial natural products underpin the majority of antimicrobial compounds in clinical use and the discovery of new effective antibacterial treatments is urgently required to combat growing antimicrobial resistance. Non-ribosomal peptides are a major class of natural products to which many notable antibiotics belong. Recently, a new family of non-ribosomal peptide antibiotics were discovered-the desotamide family. The desotamide family consists of desotamide, wollamide, surugamide, ulleungmycin and noursamycin/curacomycin, which are cyclic peptides ranging in size between six and ten amino acids in length. Their biosynthesis has attracted significant attention because their highly functionalised scaffolds are cyclised by a recently identified standalone cyclase. Here, we provide a concise review of the desotamide family of antibiotics with an emphasis on their biosynthesis.

8.
mSphere ; 5(2)2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269155

RESUMO

The survival of any microbe relies on its ability to respond to environmental change. Use of extracytoplasmic function (ECF) RNA polymerase sigma (σ) factors is a major strategy enabling dynamic responses to extracellular signals. Streptomyces species harbor a large number of ECF σ factors, nearly all of which are uncharacterized, but those that have been characterized generally regulate genes required for morphological differentiation and/or response to environmental stress, except for σAntA, which regulates starter-unit biosynthesis in the production of antimycin, an anticancer compound. Unlike a canonical ECF σ factor, whose activity is regulated by a cognate anti-σ factor, σAntA is an orphan, raising intriguing questions about how its activity may be controlled. Here, we reconstituted in vitro ClpXP proteolysis of σAntA but not of a variant lacking a C-terminal di-alanine motif. Furthermore, we show that the abundance of σAntAin vivo was enhanced by removal of the ClpXP recognition sequence and that levels of the protein rose when cellular ClpXP protease activity was abolished. These data establish direct proteolysis as an alternative and, thus far, unique control strategy for an ECF RNA polymerase σ factor and expands the paradigmatic understanding of microbial signal transduction regulation.IMPORTANCE Natural products produced by Streptomyces species underpin many industrially and medically important compounds. However, the majority of the ∼30 biosynthetic pathways harbored by an average species are not expressed in the laboratory. This unrevealed biochemical diversity is believed to comprise an untapped resource for natural product drug discovery. Major roadblocks preventing the exploitation of unexpressed biosynthetic pathways are a lack of insight into their regulation and limited technology for activating their expression. Our findings reveal that the abundance of σAntA, which is the cluster-situated regulator of antimycin biosynthesis, is controlled by the ClpXP protease. These data link proteolysis to the regulation of natural product biosynthesis for the first time to our knowledge, and we anticipate that this will emerge as a major strategy by which actinobacteria regulate production of their natural products. Further study of this process will advance understanding of how expression of secondary metabolism is controlled and will aid pursuit of activating unexpressed biosynthetic pathways.


Assuntos
Antimicina A/análogos & derivados , Endopeptidase Clp/genética , Regulação Bacteriana da Expressão Gênica , Streptomyces/enzimologia , Streptomyces/genética , Antimicina A/biossíntese , Proteínas de Bactérias/genética , Proteólise , Fator sigma/genética , Estresse Fisiológico
9.
Antonie Van Leeuwenhoek ; 113(4): 511-520, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31781915

RESUMO

Cloning natural product biosynthetic gene clusters from cultured or uncultured sources and their subsequent expression by genetically tractable heterologous hosts is an essential strategy for the elucidation and characterisation of novel microbial natural products. The availability of suitable expression hosts is a critical aspect of this workflow. In this work, we mutagenised five endogenous biosynthetic gene clusters from Streptomyces albus S4, which reduced the complexity of chemical extracts generated from the strain and eliminated antifungal and antibacterial bioactivity. We showed that the resulting quintuple mutant can express foreign biosynthetic gene clusters by heterologously producing actinorhodin, cinnamycin and prunustatin. We envisage that our strain will be a useful addition to the growing suite of heterologous expression hosts available for exploring microbial secondary metabolism.


Assuntos
Produtos Biológicos/metabolismo , Streptomyces/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Bacteriocinas/química , Bacteriocinas/metabolismo , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Macrolídeos/química , Macrolídeos/metabolismo , Estrutura Molecular , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Especificidade da Espécie
10.
ACS Chem Biol ; 14(5): 845-849, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30925045

RESUMO

The terminal step in the biosynthesis of nonribosomal peptides is the hydrolytic release and, frequently, macrocyclization of an aminoacyl-S-thioester by an embedded thioesterase. The surugamide biosynthetic pathway is composed of two nonribosomal peptide synthetase (NRPS) assembly lines in which one produces surugamide A, which is a cyclic octapeptide, and the other produces surugamide F, a linear decapeptide. The terminal module of each system lacks an embedded thioesterase, which led us to question how the peptides are released from the assembly line (and cyclized in the case of surugamide A). We characterized a cyclase belonging to the ß-lactamase superfamily in vivo, established that it is a trans-acting release factor for both compounds, and verified this functionality in vitro with a thioester mimic of linear surugamide A. Using bioinformatics, we estimate that ∼11% of filamentous Actinobacteria harbor an NRPS system lacking an embedded thioesterase and instead employ a trans-acting cyclase. This study improves the paradigmatic understanding of how nonribosomal peptides are released from the terminal peptidyl carrier protein and adds a new dimension to the synthetic biology toolkit.


Assuntos
Peptídeo Sintases/química , beta-Lactamases/química , Actinobacteria/enzimologia , Sequência de Aminoácidos , Ciclização , Oligopeptídeos/química , Biologia Sintética
11.
Nat Prod Rep ; 35(6): 575-604, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29721572

RESUMO

Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.


Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Antibacterianos/metabolismo , 4-Butirolactona/genética , 4-Butirolactona/metabolismo , Antraquinonas/metabolismo , Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Microbiologia Industrial/métodos , Família Multigênica , Nitrogênio , Metabolismo Secundário , Estreptomicina/biossíntese , Estreptomicina/metabolismo
12.
ACS Chem Biol ; 13(5): 1398-1406, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29693372

RESUMO

Antimycins are a family of natural products possessing outstanding biological activities and unique structures, which have intrigued chemists for over a half century. Of particular interest are the ring-expanded antimycins that show promising anticancer potential and whose biosynthesis remains uncharacterized. Specifically, neoantimycin and its analogs have been shown to be effective regulators of the oncogenic proteins GRP78/BiP and K-Ras. The neoantimycin structural skeleton is built on a 15-membered tetralactone ring containing one methyl, one hydroxy, one benzyl, and three alkyl moieties, as well as an amide linkage to a conserved 3-formamidosalicylic acid moiety. Although the biosynthetic gene cluster for neoantimycins was recently identified, the enzymatic logic that governs the synthesis of neoantimycins has not yet been revealed. In this work, the neoantimycin gene cluster is identified, and an updated sequence and annotation is provided delineating a nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) hybrid scaffold. Using cosmid expression and CRISPR/Cas-based genome editing, several heterologous expression strains for neoantimycin production are constructed in two separate Streptomyces species. A combination of in vivo and in vitro analysis is further used to completely characterize the biosynthesis of neoantimycins including the megasynthases and trans-acting domains. This work establishes a set of highly tractable hosts for producing and engineering neoantimycins and their C11 oxidized analogs, paving the way for neoantimycin-based drug discovery and development.


Assuntos
Antibacterianos/metabolismo , Depsipeptídeos/biossíntese , Clonagem Molecular , Genes Bacterianos , Família Multigênica , Compostos Orgânicos/metabolismo , Streptomyces/genética , Especificidade por Substrato
13.
Microbiology (Reading) ; 164(1): 28-39, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29111964

RESUMO

Streptomyces species and other Actinobacteria are ubiquitous in diverse environments worldwide and are the source of, or inspiration for, the majority of antibiotics. The genomic era has enhanced biosynthetic understanding of these valuable chemical entities and has also provided a window into the diversity and distribution of natural product biosynthetic gene clusters. Antimycin is an inhibitor of mitochondrial cytochrome c reductase and more recently was shown to inhibit Bcl-2/Bcl-XL-related anti-apoptotic proteins commonly overproduced by cancerous cells. Here we identify 73 putative antimycin biosynthetic gene clusters (BGCs) in publicly available genome sequences of Actinobacteria and classify them based on the presence or absence of cluster-situated genes antP and antQ, which encode a kynureninase and a phosphopantetheinyl transferase (PPTase), respectively. The majority of BGCs possess either both antP and antQ (L-form) or neither (S-form), while a minority of them lack either antP or antQ (IQ- or IP-form, respectively). We also evaluate the biogeographical distribution and phylogenetic relationships of antimycin producers and BGCs. We show that antimycin BGCs occur on five of the seven continents and are frequently isolated from plants and other higher organisms. We also provide evidence for two distinct phylogenetic clades of antimycin producers and gene clusters, which delineate S-form from L- and I-form BGCs. Finally, our findings suggest that the ancestral antimycin producer harboured an L-form gene cluster which was primarily propagated by vertical transmission and subsequently diversified into S-, IQ- and IP-form biosynthetic pathways.


Assuntos
Actinobacteria/classificação , Actinobacteria/genética , Antimicina A/análogos & derivados , Vias Biossintéticas/genética , Evolução Molecular , Família Multigênica/genética , Filogenia , Actinobacteria/enzimologia , Actinobacteria/metabolismo , Antimicina A/biossíntese , Proteínas de Bactérias/genética , Bases de Dados Genéticas , Genes Bacterianos , Genômica , Hidrolases/genética , Filogeografia , Transferases (Outros Grupos de Fosfato Substituídos)/genética
14.
J Biotechnol ; 265: 116-118, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29191667

RESUMO

Here we report the complete genome of the new species Streptomyces formicae KY5 isolated from Tetraponera fungus growing ants. S. formicae was sequenced using the PacBio and 454 platforms to generate a single linear chromosome with terminal inverted repeats. Illumina MiSeq sequencing was used to correct base changes resulting from the high error rate associated with PacBio. The genome is 9.6 Mbps, has a GC content of 71.38% and contains 8162 protein coding sequences. Predictive analysis shows this strain encodes at least 45 gene clusters for the biosynthesis of secondary metabolites, including a type 2 polyketide synthase encoding cluster for the antibacterial formicamycins. Streptomyces formicae KY5 is a new, taxonomically distinct Streptomyces species and this complete genome sequence provides an important marker in the genus of Streptomyces.


Assuntos
Genoma Bacteriano , Streptomyces/genética , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Policetídeo Sintases/metabolismo , Streptomyces/metabolismo
15.
Sci Rep ; 7(1): 17419, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234001

RESUMO

Of the thousands of natural product antibiotics discovered to date, only a handful have been developed for the treatment of bacterial infection. The clinically unexploited majority likely include compounds with untapped potential as antibacterial drugs, and in view of the ever-growing unmet medical need for such agents, warrant systematic re-evaluation. Here we revisit the actinorhodins, a class that was first reported 70 years ago, but which remains poorly characterized. We show that γ-actinorhodin possesses many of the requisite properties of an antibacterial drug, displaying potent and selective bactericidal activity against key Gram-positive pathogens (including Staphylococcus aureus and enterococci), a mode of action distinct from that of other agents in clinical use, an extremely low potential for the development of resistance, and a degree of in vivo efficacy in an invertebrate model of infection. Our findings underscore the utility of revisiting unexploited antibiotics as a source of novel antibacterial drug candidates.


Assuntos
Antibacterianos/farmacologia , Animais , Antraquinonas/farmacologia , Candida albicans/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Descoberta de Drogas , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Humanos , Lactonas/farmacologia , Lepidópteros , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Streptomyces coelicolor/efeitos dos fármacos
16.
Microbiology (Reading) ; 163(10): 1415-1419, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28884676

RESUMO

MtrAB is a highly conserved two-component system implicated in the regulation of cell division in the Actinobacteria. It coordinates DNA replication with cell division in the unicellular Mycobacterium tuberculosis and links antibiotic production to sporulation in the filamentous Streptomyces venezuelae. Chloramphenicol biosynthesis is directly regulated by MtrA in S. venezuelae and deletion of mtrB constitutively activates MtrA and results in constitutive over-production of chloramphenicol. Here we report that in Streptomyces coelicolor, MtrA binds to sites upstream of developmental genes and the genes encoding ActII-1, ActII-4 and RedZ, which are cluster-situated regulators of the antibiotics actinorhodin (Act) and undecylprodigiosin (Red). Consistent with this, deletion of mtrB switches on the production of Act, Red and streptorubin B, a product of the Red pathway. Thus, we propose that MtrA is a key regulator that links antibiotic production to development and can be used to upregulate antibiotic production in distantly related streptomycetes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Streptomyces coelicolor/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Mutação , Metabolismo Secundário/genética , Esporos Bacterianos
17.
Front Microbiol ; 8: 1145, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28702006

RESUMO

Streptomyces bacteria make numerous secondary metabolites, including half of all known antibiotics. Production of antibiotics is usually coordinated with the onset of sporulation but the cross regulation of these processes is not fully understood. This is important because most Streptomyces antibiotics are produced at low levels or not at all under laboratory conditions and this makes large scale production of these compounds very challenging. Here, we characterize the highly conserved actinobacterial two-component system MtrAB in the model organism Streptomyces venezuelae and provide evidence that it coordinates production of the antibiotic chloramphenicol with sporulation. MtrAB are known to coordinate DNA replication and cell division in Mycobacterium tuberculosis where TB-MtrA is essential for viability but MtrB is dispensable. We deleted mtrB in S. venezuelae and this resulted in a global shift in the metabolome, including constitutive, higher-level production of chloramphenicol. We found that chloramphenicol is detectable in the wild-type strain, but only at very low levels and only after it has sporulated. ChIP-seq showed that MtrA binds upstream of DNA replication and cell division genes and genes required for chloramphenicol production. dnaA, dnaN, oriC, and wblE (whiB1) are DNA binding targets for MtrA in both M. tuberculosis and S. venezuelae. Intriguingly, over-expression of TB-MtrA and gain of function TB- and Sv-MtrA proteins in S. venezuelae also switched on higher-level production of chloramphenicol. Given the conservation of MtrAB, these constructs might be useful tools for manipulating antibiotic production in other filamentous actinomycetes.

18.
Chem Sci ; 8(4): 3218-3227, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28507698

RESUMO

We report a new Streptomyces species named S. formicae that was isolated from the African fungus-growing plant-ant Tetraponera penzigi and show that it produces novel pentacyclic polyketides that are active against MRSA and VRE. The chemical scaffold of these compounds, which we have called the formicamycins, is similar to the fasamycins identified from the heterologous expression of clones isolated from environmental DNA, but has significant differences that allow the scaffold to be decorated with up to four halogen atoms. We report the structures and bioactivities of 16 new molecules and show, using CRISPR/Cas9 genome editing, that biosynthesis of these compounds is encoded by a single type 2 polyketide synthase biosynthetic gene cluster in the S. formicae genome. Our work has identified the first antibiotic from the Tetraponera system and highlights the benefits of exploring unusual ecological niches for new actinomycete strains and novel natural products.

19.
mSphere ; 1(6)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27981234

RESUMO

Streptomyces species produce an incredible array of high-value specialty chemicals and medicinal therapeutics. A single species typically harbors ~30 biosynthetic pathways, but only a few them are expressed in the laboratory; thus, poor understanding of how natural-product biosynthesis is regulated is a major bottleneck in drug discovery. Antimycins are a large family of anticancer compounds widely produced by Streptomyces species, and their regulation is atypical compared to that of most other natural products. Here we demonstrate that antimycin production by Streptomyces albus S4 is regulated by FscRI, a PAS-LuxR family cluster-situated regulator of the polyene antifungal agent candicidin. We report that heterologous production of antimycins by Streptomyces coelicolor is dependent on FscRI and show that FscRI activates the transcription of key biosynthetic genes. We also demonstrate through chromatin immunoprecipitation sequencing that FscRI regulation is direct, and we provide evidence that this regulation strategy is conserved and unique to short-form antimycin gene clusters. Our study provides direct in vivo evidence of the cross-regulation of disparate biosynthetic gene clusters specifying unrelated natural products and expands the paradigmatic understanding of the regulation of secondary metabolism. IMPORTANCE Natural products produced by members of the phylum Actinobacteria underpin many industrially and medically important compounds; however, the majority of the ~30 biosynthetic pathways harbored by an average species are not expressed in the laboratory. Understanding the diversity of regulatory strategies controlling the expression of these pathways is therefore critical if their biosynthetic potential is to be explored for new drug leads. Our findings reveal that the candicidin cluster-situated regulator FscRI coordinately controls the biosynthesis of both candicidin and antimycin, which is the first observation of cross-regulation of disparate biosynthetic gene clusters specifying unrelated natural products. We anticipate that this will emerge as a major strategy by which members of the phylum Actinobacteria coordinately produce natural products, which will advance our understanding of how the expression of secondary metabolism is controlled and will aid the pursuit of "silent" biosynthetic pathway activation.

20.
PLoS One ; 10(1): e0116457, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25635820

RESUMO

Streptomyces spp. are robust producers of medicinally-, industrially- and agriculturally-important small molecules. Increased resistance to antibacterial agents and the lack of new antibiotics in the pipeline have led to a renaissance in natural product discovery. This endeavor has benefited from inexpensive high quality DNA sequencing technology, which has generated more than 140 genome sequences for taxonomic type strains and environmental Streptomyces spp. isolates. Many of the sequenced streptomycetes belong to the same species. For instance, Streptomyces albus has been isolated from diverse environmental niches and seven strains have been sequenced, consequently this species has been sequenced more than any other streptomycete, allowing valuable analyses of strain-level diversity in secondary metabolism. Bioinformatics analyses identified a total of 48 unique biosynthetic gene clusters harboured by Streptomyces albus strains. Eighteen of these gene clusters specify the core secondary metabolome of the species. Fourteen of the gene clusters are contained by one or more strain and are considered auxiliary, while 16 of the gene clusters encode the production of putative strain-specific secondary metabolites. Analysis of Streptomyces albus strains suggests that each strain of a Streptomyces species likely harbours at least one strain-specific biosynthetic gene cluster. Importantly, this implies that deep sequencing of a species will not exhaust gene cluster diversity and will continue to yield novelty.


Assuntos
Metabolismo Secundário , Streptomyces/metabolismo , Vias Biossintéticas , Genes Bacterianos , Metaboloma , Família Multigênica , Filogenia , Especificidade da Espécie , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA